ABSOLUTE QUADRATIC PSEUDOPRIMES

RICHARD G.E. PINCH

ABSTRACT. We describe some primality tests based on quadratic rings and
discuss the absolute pseudoprimes for these tests.

1. INTRODUCTION

We describe some primality tests based on quadratic rings and discuss the abso-
lute pseudoprimes for these tests.

2. PRIMALITY TESTS

We briefly recall some standard probabilistic primality tests. We assume through-
out that N is the integer under test, and that IV is already known to be odd and
not a perfect power.

The Fermat criterion with base b is the condition b ~! = 1 mod N. We shall
usually distinguish between a criterion or condition, which is a necessary condition
for primality, and a test, which specifies the details of the application of that cri-
terion. For example, we would expect a Fermat test to include a preliminary trial
division (at least as far as 2), possibly a test to eliminate perfect powers, and to
specify a method (deterministic or random) for selecting the base b. A (Fermat)
probable prime base b is a number N which passes this test: a (Fermat) pseudoprime
is a composite number which passes. An absolute (Fermat) pseudoprime is a com-
posite number which satisfies the Fermat criterion for every base b with (b,n) = 1.
It is well-known that these are just the Carmichael numbers: N is a Carmichael
number iff N is square-free with at least three prime factors and p — 1|N — 1 for
every prime p dividing N.

For background on Carmichael numbers and details of previous computations we
refer to our previous paper [24]: in that paper we described the computation of the
Carmichael numbers up to 10 and presented some statistics. These computations
have since been extended [26] to 1016, using the same techniques.

We can refine this to the Fermat-FEuler criterion by requiring that b(
+1 mod N, and again by identifying the sign to form the Fuler—Jacobi criterion
p(N-1)/2 = (£) mod N, where () is the Jacobi symbol. This latter is the primal-
ity criterion of Solovay—Strassen [31],[32].

N-1)/2 —

Proposition 2.1. (1) If N is an absolute pseudoprime for the Fermat—FEuler
criterion we have BN =1/2 = 41 mod N for all b prime to N.
(2) There are no absolute pseudoprimes for the Euler—Jacobi criterion.

Proof. For the first part, suppose that p and ¢ are distinct prime factors of N. Given
b prime to N, write b = b1by where by = b mod p and = 1 mod ¢; so we have by =
N=1/2 — 11 mod N

1 mod p and = b mod g. The assumption on NN implies that b,
)/2

for + = 1,2, but in each case the sign must be +1 considering ng_l mod ¢ and

b V"% mod p. So bNTD/2 = (b1by)ND/2 = 1 mod N.
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The second part follows by observing that N is not a perfect square, so (%) =-1
for some b. |

The final extension to the Fermat criterion which we consider is the strong or
Miller—Rabin criterion [20],[21],[27]. Given an odd N, write N —1 = 2"s, with s
odd, and for b mod N form the sequence

b b2 b s b2 s = N1 mod N

in which each term is the square of the preceding. The criterion requires that the
sequence end in 1, and further that the first occurence of 1 either be at the first
term, or be preceded by —1.

It is clear that the Miller—Rabin criterion includes the Fermat—Euler criterion: in
fact it includes the Euler—Jacobi criterion as well. There are thus no absolute pseu-
doprimes for this criterion: indeed, the proportion of bases b for which a composite
number can satsify the criterion is at most 1/4.

3. QUADRATIC RINGS

A variety of primality tests have been proposed which extend the Fermat test to a
quadratic ring. Let N and d be integers: we shall assume throughout that /V is odd
and d is prime to N. Let R = R(N, d) denote the quadratic ring Z[X]/(N, X* — d).
It is natural to denote the image of X in this ring by v/d. If M and N are co-
prime then the Chinese Remainder Theorem gives a natural isomorphism between
R(MN,d) and R(M,d) & R(N,d), so we shall be interested in the case when N is
an odd prime power pf.

We define an automorphism ’ of R = R(N,d) by mapping Vd — —+/d: this is
inudeced by the automorphism X — —X of Z[X], which is compatible with the
quotient map. The fixed points of / form a subring F(N, d) which is just the copy
of Z/(N) inside R. The norm of an element [ is N'(3) = 5’: this map takes values
in Z/(N). If N(B) is invertible (prime to N), then so is 3, with =1 = 8'/N(3).
The unit group R* contains the corational or twisted multiplicative group C(N,d),
consisting of the elements of norm one. The action of / on C' is given by 3 +— S~
The anti-norm is defined on R* by A(B3) = 3/5’.

We denote the set of elements of norm b by Cy(p, d). If non-empty, it is a coset
of C'= (4.

3.1. Prime modulus. We first consider the case when N is a prime p. If d is a
quadratic non-residue of p then R is the field F,>, whereas if d is a quadratic residue
of p, then R is the direct sum F, @ F,. Hence the unit group R* is either a cyclic
group of order p? — 1 or a direct product of two cyclic groups of order p — 1. If R
is F)2, the automorphism ’ is the Frobenius automorphism 3 — (3?: otherwise it is
the interchange of the two direct summands.

The norm map is N(3) = P! in Fj2 and (a,b) — ab in F, ® F,; the anti-norm
is A(B) = ' P in Fp2 and (a,b) — a/b in F, ® F).

The corational group C' is either the subgroup generated by the anti-norm 4?~!
of a generator v of R* when R = [F,2, or the set of elements corresponding to the

form (z,27!) when R = F, & F,. It is cyclic of order p — (%), that is, p+1orp—1
respectively.

If 3 is an element of R then (P is either 5’ or (3 in the two cases: we can express
this succinctly by saying that the Frobenius condition

(3.1) (z+yVd)P = z+ (;l) yVd

holds.
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The subring F' fixed by " is the field [, in each case, either as a subfield of F
or as the diagonal in F, @ F,. So in each case F'* is cyclic of order p — 1.

The norm map has kernel C' and image F*. The anti-norm has kernel F* and
image C. The restriction of the anti-norm to C is just 8 — (32, with kernel CNF* =
{£1} and image a cyclic group of order (p - (%)) /2.

When R = F,2, the norm map is surjective , so C} is a non-empty coset of
C =Ch, of order p+ 1. When R =T, & F, then C}, = {(a,b/a) : a € F,} is a coset
of C of order p — 1.

We briefly consider the special case C_;. When R = [F)2, this is the set of odd
powers of 4(P~1)/2 where ~ is a generator of the cyclic group R*. When R = F,®F,,
this is the set of pairs (b, —1/b) for b € F,". We note that the map 8 — (% maps
C_ onto C in the first case and onto the index 2 subgroup of pairs (b%,1/b?) in the
second case.

Proposition 3.1. Let § € F2 with N(3) = B. If the order of B in F)," is e, then
the order of B in F,2" is e(p+1).

Proof. Let B = g/ where ef = p — 1 and ¢ is a generator of F,*. Let v be a
generator of F2* with N'(y) = 4?1 = g, and let 8 = +". We have N'(3) = gr+! =
APt = B = gf = APt 5o r(p+1) = (p+1)f mod p?> —1 and r = f mod p—1,
say r = f + s(p — 1). Replacing v by v'7*¢, which is again a generator of F2*, we
may assume that 3 = /. The order of 3 is then (p? —1)/f = e(p + 1). O

Lemma 3.2. Let G be a cyclic group of order r. The number of solutions to the
equation X™ = b in G is zero or (n, f) where the order of b in G ise andef =r. For
solutions to exist, it is necessary and sufficient that n/(n, f) be prime to r/(n, f).

Proof. Choose a generator g of G so that b = g/, and put X = ¢g¥. The equation be-
comes ny = f mod r, and hence y.n/(f,n) = f/(f,n) mod r/(f,n). Since f/(f,n)
is coprime to n/(f,n), it is clearly necessary for solutions to exist that n/(n, f) be
coprime to r/(f,n).

Suppose now that this condition holds. The equation for y has a unique solution
y modulo r/(f,n), and hence (f,n) solutions modulo 7. O

3.2. Prime powers. We now consider the structure of R(p/,d). The map p :
R(pf,d) — R(p,d) given by reduction modulo p is a ring homomorphism, with
kernel pR(p’,d) of order p>/=1). An element § € R(p/,d) is invertible iff the
norm N(f) is invertible in Z/(p’) iff N'(B) is prime to p iff p(N'(3)) = N (p(3)) is
invertible in Z/(p) iff p(B) is invertible in R(p, d). So the restriction of p to R* is a
group homomorphism onto R(p,d)* and has kernel with order a power of p.

If d is a quadratic non-residue of p then it cannot be congruent to a square
modulo p/ for any f. If d is a quadratic residue of p then by Hensel’s Lemma (since
p > 2), d is a square modulo p/ for any f > 1 and so R(p/,d) is isomorphic to the
direct sum Z/(p’) & Z/{p’).

The group R(p/,d)* is cyclic of order p?/~2(p? —1) if d is a quadratic non-residue
of p, since we can lift a generator of F,2" to a generator of R* (see, for example,
[25]). If d is a quadratic residue of p, then R* is Z/<pf>* EBZ/<pf>*, a direct product
of two cyclic groups of order p/~1(p — 1).

We consider the cosets Cp. Again if (%) = +1 then Cy, = {(a,b/a) : a € Z/{p")}

is a coset of C of order p/~!(p—1). If (%) = —1 then a solution to A'(3) = b mod p

can be lifted by Hensel’s Lemma to a solution modulo p7, so Cj, is again a non-empty
coset of C, of order p/~1(p +1).

Proposition 3.3. Let R = R(p’,d) with f > 1. There are elements of multiplica-
tive order divisible by p in every coset Cy.



4 RICHARD G.E. PINCH

Proof. If (%) = +1 then Cy = {(a,b/a) : a € Z/{p’)} and we can choose a to

have multiplicative order divisible by p: the order of the pair (a,b/a) will then be
a multiple of that of a and hence of p.

If (%) = —1, we consider the elements of order not divisible by p: there are

p? — 1 of these. Since the reduction map p is one-to-one on such elements, there are
p + 1 elements of order prime to p in C; and so every coset Cj has at most p + 1
such elements. Hence each coset has elements of order divisible by p. O

Proposition 3.4. Let R = R(p,d). Leta € C and b € F. The equations N (3) = b,
A(B) = « are soluble if a and b are both squares or both non-squares in C and F
respectively.

Proof. If (%) = +1 then let 8 < (r,s) € F, & F, and a < (a,1/a). The equations

on (3 are equivalent to 7s = b, r/s = a, and these are equivalent to 7> = ab, s> = b/a.
These are soluble iff ab is a square in F,, which is in turn equivalent to the stated
conditjons on « and b.

If (%) = —1 then let v be a generator of F,*, and write § = +*, b = A (P+y

and a = y(P~Y2, The equations on (3 are equivalent to (p + 1)z = (p + 1)y and
(p—1)x = (p—1)z modulo p? — 1: these are equivalent to x = y mod p—1 and x =
z mod p+ 1. By the Chinese Remainder Theorem these are soluble simultaneously
iff y =z mod (p—1,p+1), that is, modulo 2. Again this is equivalent to the stated
conditions on « and b. O

3.3. Lucas sequences. Let 3 = x + yV/d satisfy the equation X2 — AX + B =0
where A is the trace 5+ (' and B is the norm §3’. We define the Lucas sequences
Ui (A, B) and Vi (A, B) associated to 3 by

6k _ ﬁ/k
(3.2) U, = i
(3.3) Vi = gF+p"
or equivalently
ﬁk _ Vk + Uk\/;l-
2

There are recurrence relationships

Up=0, Uy=1, Ugy1 =AU — BU,_1
Vo=2, Vi=A, Vi1 =AV,— BV

There are fast formulae for evaluating U and V using the duplication formulae

(3.4) Uk = UpVi

(3.5) Vor, = V2—2BF
and

(3.6) Usky1 = UptaVi — B*
(3.7) Vorr1 = Vie1Vi — AB*

which are particularly convenient if B = £1: see, for example, Riesel [28] (4.30—47)
and Joye and Quisquater [15].
The Dickson polynomials gi(X,—B) are defined by

Lk/2] ko (k- _ _
gu(X,~B) = ( | )B i xk-2
x-m=3 5 (7;7)e
=
and have the property that
Vi = gr(—A, —B).
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See Lidl and Niederreiter [19] (7.6).

4. FERMAT-TYPE TESTS AND STRENGTHENING

We can generalise the notion of the Fermat test to other families of groups. Let
G be a family of abelian groups G(N) defined for all positive integers N composed
of integers from some infinite set P of primes. We suppose that these groups
satisfy the Chinese Remainder property, that is, G(MN) =2 G(M)®G(N) whenever
M and N are coprime. We also assume that the group operations in G(N) are
easy to perform. We denote the order of G(N) by ¢g(N) and the exponent by
Ag(N). We suppose that there is a function F'(N) which is easily computable and
agrees with Ag(/N) whenever N is prime. We further suppose that the groups in G
have the splitting property: if x € G(MN) is a splitting element, that is, satisfies
x=(1,2) € G(M)®G(N), where 1 is the identity of G(M) and z is not the identity
of G(N), then there is a fast algorithm for factoring M N.

The G-Fermat test for primality of N is to take a random element of b € G(N)
and to test whether b¥'(V) is the identity in G(N). If not, N is certainly composite:
otherwise we call N an G-probable prime, and an G-pseudoprime if it is in fact
composite. An absolute G-pseudoprime has this property whenever b € G(N).

The first example of such a system is the multiplicative group G(N) = (Z/(N))*.
We have P = { all primes } and F(p) = p — 1. The splitting property is achieved
by applying Euclid’s algorithm to find hef{z — 1, N} if z is a splitting element.

We can express a number of the quadratic tests in the same framework, using
groups associated to the quadratic ring R(N,d). If we take G(NN) to be the unit

group C in R(N,d)*, then F(p) =p— (%), and the Fermat condition becomes test
Al
Now let 7 be a prime: we shall usually take m = 2. We assume throughout that

N is always prime to w. Define the w-strengthening of the G-Fermat test for N by
writing f(N) = 7n"s with s prime to 7, and forming the sequence

b*, b™, ..., b" e G(N) :

the test requires that the sequence end in 1, which is the Fermat condition, and
further that the first occurence of 1 in the sequence not be preceded by a splitting
element.

The Miller-Rabin test is the 2-strengthening of the usual Fermat test: a splitting
element will be an e # 1 mod N with e? = 1, by considering hcf{e 1, N'}.

We can express the effect of the w-strengthening by letting o, (b, G(N)) be the
power of 7 dividing the order of b in the group G(N). The additional requirement of
the m-strengthening is that the value of o, (b, G(p;*)) should be the same for every
prime power p;’ dividing N. If so, we call this common value the level of b: it is
the position in the sequence of the first occurrence of 1.

For a group G(p*), we define the 7-dimension d of G(p*) as the dimension of the
elements of G(p®) of order dividing 7 as a vector space over F,, and the w-height h
of G(p®) as the maximal power of 7 dividing the order of any element of G(p®): so
h is the largest value of any o, (b, G(p®)). In particular, each of 7¢ and 7" divides
bg(p®) and 7" divides Ag(p?).

4.1. Groups of dimension 1. Suppose for the moment that the dimension d = 1,
so that the m-part of G(p®) is cyclic and ¢g(p®) = 7"'m with m prime to 7. Let
¢(l) denote the proportion of b € G(p*) for which o, (b, G(p®)) = I. We have ¢(0)
equal to the proportion of elements = of G(p®) which satisfy 2™ = 1, so ¢(0) =
m/pg(p®) = 7. Each subsequent c(I) for 0 < [ < h is the proportion of elements

of G(p®) which satisfy 2™ ™ =1 but not 2™ ™ = 1, that is, c() = 7/~"(1 — 7~ 1).
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Put N = HZ 1 it Let ¢;(I) denote the proportion of b € G(p;f*) for which
0-(b,G(pj")) = l. Let W(N) be the number of element of G(NN) which satisfy
the Fermat part of the criterion, and S;(N) the number which satisfy the =-
strengthening. We have

Sx(N)=W(N)Y_[[e)

1=0 i=1

Proposition 4.1. Suppose that d = 1. Let F(N) = n"s with s prime to w. The
proportion of elements which satisfy the w-strengthening of the Fermat criterion is
at most 1 if r or one of the h; is zero, and at most w—t otherwise.
Proof. Let S =3%"_, szl ¢i(l). Put H =3, h; and let p = min{r, h;}. The term
[T_, () is 7= for I = 0; 7=~ for | < p; and zero otherwise.

If p =0 then S = Hle ¢;i(0) = m=H. So consider the case p > 1. We have all
the h; >1and H > pt >t > 1. So

S=nH 1+Zp:7rt(l*1) =g H 1+7Ttp71
— mt—1

Suppose that 0 < a < H — 1. We have
( —7m)(r*—=1) >0

and, rearranging, w7 + 7! > 7~ 4 gl+a (alternatively, consider them as integers
written in base 7). So

7.‘.H +r > a1t _|_ﬂ_t’
pHHL Lo > ol pHAL=t ot
Pt 1< H _q < pHFL gt pHAI-t (ﬂ_t o 1) (ﬂ.H—‘rl—t o 1)
Pt —1

+ 1 S ﬂ_H-'rl—t
7Tt

giving S < 7'~* as required. O

5. QUADRATIC PRIMALITY TESTS

We can use the Frobenius criterion (3.1) as a primality testing criterion. Given
N, we select an arbitrary d prime to N and 8 = z + yv/d. The symbol (%) is
interpreted as the Jacobi symbol: its computation can be carried our by a variant
of the Euclidean Algorithm and verifies that (d,n) = 1 as a by-product. We require
that B = N(3) be prime to N and then that the Frobenius condition hold for N
to be declared probably prime. See Grantham [12, 11].

There are a number of specialisations of this condition. We let A denote the
Frobenius condition (3.1) for the number N: that is, for any 3 = z 4+ yv/d we have
Vy =z and Uy = (%) y modulo N, where Uy and Vj are the Lucas sequences
(3.3) associated to 5. We let B denote the condition that Viy = x mod N, and C
the condition that Uy_. = 0 mod N, where € = (%)

Let X denote one of these conditions. We introduce some notation for various
specialisations of the condition X. We let X (d) denote the requirement that the
condition hold for a given discriminant d. We let X, where € is + or —, denote
the requirement that the condition hold whenever (%) =¢e. We let X° denote the
requirement that the condition hold for all 3 with norm b. So Al, for example,
denotes the condition that 8N = ' for all 8 = z + yv/d of norm 1 with (%) =—1.

We refer to these conditions collectively as quadratic primality criteria.

Proposition 5.1. For given € = %1, the conditions B, and C¢ together are equiv-
alent to A..
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Proof. 1t is clear that A, implies both of B, and C,. In the other direction, suppose
that 8 = & + y\/d satisfies both of B, and C., where (%) =e.

If ¢ = +1 we have 8V = z + zv/d for some z and V-1 = v + 0Vd. So N =
v = vr+vzvd. Equating coefficients, we have vz = 2 mod N, sov=1and z = y:
that is, BN = 8.

If e = —1 we have 3Y = x + 2V/d for some z and V! = v + 0Vd. So gV =
vB' /B = (v/B)(x —y\/d). Equating coefficients, we must have v = B and g~ = 3.

So in each case condition A, is satisfied. O

We note that the result applies to the specialisations A, BY, C?.

Consider condition A_, which requires that Y = 3 mod N. This implies that
BNt = 33" = B, and so implies that BVY~! = 1 mod N. It also implies that
(B/8)YN = p'/B, so oVt =1 for all a in the corational group C;. We can thus
interpret criterion A_ or A as including the conventional Fermat criterion and its
analogue for the corational group.

5.1. Absolute quadratic pseudoprimes. We consider composite numbers satis-
fying one of these criteria for all permissible choices of 3: we call such a number an
absolute pseudoprime for the relevant criterion.

We put 3 = & + yv/d with norm B = 22 — dy?. We assume throughout that N
is not a prime power, that N is prime to 6dB and that, if B # 1 then N is prime
to B — 1.

Proposition 5.2. (1) An absolute pseudoprime for criteria Ay, A_ or B must

be a Carmichael number.

(2) There are no absolute pseudoprimes for criterion A.

(3) An absolute pseudoprime for criterion AZ' must also be an absolute pseu-
doprime for criterion Al for each ¢ = +1.

(4) The criteria Cy are equivalent to AL respectively.

(5) An absolute pseudoprime for a criterion Ai must be a Carmichael number.

(6) An absolute pseudoprime for a criterion A% (d) must be square-free.

Proof. (1) Consider 3 = 2 4+ 0v/d. The condition implies 2™ = 2 mod N, for
any value of x, and so N must be a Carmichael number.

(2) Consider 8 = V/d. The condition implies dV=1/2 = (4) mod N, for which

it is already known there are no absolute pseudoprimes by Proposition 2.1.

(3) Consider the map 8+ 32 for d with (%) = —1. As already noted this map

on C_; is onto C; and the Frobenius condition holds for 32 if it holds for
8. So if condition All holds for all 3 € C_1, then condition AL must hold
for all « € C;.

(4) We have Uy_. = 0mod N all B iff pN=¢ € F all g iff gVN—¢ = (3)V~¢ all
B iff aN7¢ =1 all a € C, since the anti-norm is onto C, iff a” = « resp.
o all a e C.

(5) Suppose p/ is a prime power factor of N and (%) = +1. We have (a,b/a)N =

(a,b/a) mod p7, so in particular a” = a mod p’ for any a, and any p/|N.

Hence N must be a Carmichael number.

(6) The map 3 — BV is required to be a permutation of the appropriate set
Cy. But if pf divides N with f > 1 then by Proposition 3.3 the coset C} in
R(p’,d) contains elements of order divisible by p and the map cannot be

one-to-one on such elements.
O

Indeed, we can strengthen (4) by noting that from Lemma 3.4 the conditions C%
for two values of b, one a quadratic residue and the other a quadratic non-residue,
together imply Al .
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Theorem 5.3. (1) The requirements for an absolute pseudoprime for each of
the quadratic criteria are those given in Table 1.
(2) There are no absolute pseudoprimes for criteria A® (b#1), A_, Al or A.

Proof. Suppose that p is a prime factor of N and that N satisfies one of the condi-
tions stated. We let 3 = 2 4+ y\/d with norm B = 22 — dy?.

A;: We have Y = B mod p, so V=1 = 1 mod p. The order of 3 modulo p

can be p?> — 1 or p — 1 according as (%) = —1 or +1: we require either
p?> — 1N — 1 or p — 1|N — 1 respectively. Since the value of (%) is not

constrained by knowing (%), we require p? — 1|N — 1.
AZ_: We have Y = S mod p for B = b. The order of such 3 modulo p can
be e(p + 1) or p — 1 according as (%) = —1 or +1, where e denotes the

multiplicative order of b in F,*. We require lem{p — 1,e(p + 1)} to divide
N —1.
A1+: We have Y = B mod p for B = 1. The order of 3 modulo p can be p —

(%) and we require p— (%) |N—1. Again the value of (g) is unconstrained
so we require lem{p — 1,p+ 1} = (p2 — 1) /2 to divide N — 1.

A_: We have 8 = 3 mod p. If (%) = —1 then g~ = 3’ = 8” and we require
the order of /3, which can be p? — 1, to divide N — p. If (%) = +1 then

it can be the case that 4’ is not equal to any power of § in R*, which is
not cyclic: for example, suppose ( corresponds to (1, —1) € F, & F, so that
B < (—=1,1). So there is no condition on p and N which will guarantee
that IV satisfies the condition in this case. We note that if 3 corresponds to
(a,b) € F, @ F,, then we are requiring that a” = b and b"¥ = a. So the 3
which satisfy this condition are the 3 « (a,a”) with a¥* = a mod p: the
number of such 3 is maximised when p — 1|N2 — 1, and there are then p — 1
such values of .

Ab : We have B = 8 mod p when B = b: we assume b # 1. If (%) = -1
then gV = 3 = 3P and we require the order of 3, which can be e(p + 1),
to divide N — p, where e is the order of b in F,". If (g) = +1 then it can

again be the case that 3’ is not equal to any power of 3: consider 8 «
(1,b). Again there is no condition on p and N which will guarantee that N
satisfies the condition. If 3 <+ (a,b/a), we are requiring that a”¥ = b/a and
(b/a)N = amod p. So we require a¥*! = b and a¥*! = b mod p, which
is impossible unless b = b mod p, which is equivalent to the condition that
e|N — 1 where e is the multiplicative order of b mod p. We now have the
condition that a¥*! = b mod p. Put p—1 = ef. By Lemma 3.2 the number
of solutions to this equation is maximised when f|N 4 1 and n/f is prime
to e: when this occurs, the number of solutions is f.

Al: Again we have 8 = / mod p when B = 1, so f¥*! = 1 mod p. The
order of B can be the order of C, that is, p — (%), so we require lem{p —
Lp+1} = (p* — 1) /2 to divide N + 1.

B: We have 8V = (z + yvd)N = z + 2/d for some z. Since N is necessarily
a Carmichael number, we have gV (8N = (88")Y = BY = Bmod N, so
that 22 = y? mod N if this condition is satisfied. For any p dividing N
we therefore have 2 = 4y mod p, so that 3Y = Bor 3 in R(p,d). The

condition SV = B’ need not hold in the case % = +1, as discussed in

case A_, and there is no condition on p and N which will ensure that this
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holds. The condition 8~ = 3 is equivalent to requiring that the order of 3,
which can be p? — 1, divide N — 1.

B%: We have BN = (z + yvVd)¥ = x4+ 2v/dmod N for some z whenever
N(B) = 2% — dy? = b. Suppose that pf is a prime power factor of N with

(g) = +1. Consider 8« (1,b) € Z/(p?) @ Z/{p’), so that Y < (1,bV).

We have 1 +b = 1 + b~ mod p/, so that b = bmod p/. Now consider
B+ (a,b/a). We have a +b/a = a® + bV /a" = a¥ +b/a? mod p’. So
(@' —1Da=blaV ' —1)/a", that is, (a¥ ! —1)(a — b/a™N) = 0 mod p/.
If b # 1 mod p it cannot happen that a™¥+! = bmod p/ for all a mod p/,
so we require that a™¥~' = 1 mod p/ for all a: that is, that f = 1 and
p—1|N — 1. If b = 1 mod p then the two factors a¥~! — 1 and ™! — b
cannot both be divisible by p unless @ = +1 mod p. This cannot be the
case since p > 3. So the alternative condition f = 1 and p — 1|N + 1 will
also suffice to ensure that the condition holds. We see that in any case N

must be squarefree.

Now consider the case when (%) = —1. Suppose p|N. We have g~ +

(B)N = B+ B mod p, so BY + (b/8)Y = B+ b/B. We have ¥ — 3 =
b(BN — 3)/BN*L so (BN — B)(1 —b/BNFL) = 0mod p. The two factors
cannot both be divisible by p unless V=1 =1 and V! = b mod p, which
entail 8% = b: since 33’ = b this requires 3 = 4’ mod p. Otherwise, we have
the alternative conditions V! = 1 mod p or S¥*! = bmod p. Since by
Proposition 3.1 the order of 5 can be e(p+ 1), where e is the multiplicative
order of b mod p, we require e(p+1)| N —1 for the first condition to hold. For
the second condition we have SN*! = bmod p iff gVt = pp’ iff gV = 3/
iff 3N = 3P, which requires that e(p + 1)|N — p.

B~1': We have b = —1, so the multiplicative order of b is 2. We require that
N be square-free, that p — 1|N — 1 and that 2(p+ 1) divide either N — 1 or
N — p for each p.

B': We have b = 1, so the multiplicative order of b is 1. We require that N
be square-free, that p — 1|N £ 1 and that p 4+ 1 divide N — 1 or N — p.

O

Lidl, Miiller and Oswald [17], [18], [23] characterize a strong Fibonacci pseu-
doprime as a Carmichael number N = [[p; with one of the following properties:
either (Type I) an even number of the p; are = 3 mod 4 with p? — 1|N — 1 for the
p; = 3mod 4 and p; + 1|N £ 1 for the p; = 1 mod 4; or (Type II) there is an odd
number of p;, all = 3 mod 4, and p? — 1|N —p; for all p;. (A strong type I Fibonacci
pseudoprime is termed a strong (—1)-Dickson pseudoprime in [23].) They were not
able to exhibit any such numbers. We found just one Type I strong Fibonacci
pseudoprime less than 10!, already mentioned in [24], namely

443372888629441 =17 -31-41-43-89-97 - 167 - 331,

and none of Type II. This also answered the question of Di Porto and Filipponi [5].

Guillaume and Morain [13] quote Williams [33] as defining a A-Lucas pseudo-
prime by the condition Uy_. = 0 mod N for all Lucas sequences with defining
equation X2 — PX + @ with P2 —4Q = A and (N, AQ) = 1. The is just condition
C(A), equivalent to A'(A) by Proposition 5.2 (4). We recover the result that N is
an absolute pseudoprime for this test iff N is square-free and p — €,|N — en.

Guillaume and Morain [13] further define a strong Dickson-(c) pseudoprime if the
Dickson polynomial gx(m,c) = m mod N for all m. This is equivalent to Viy = m
for the Lucas sequence attached to the polynomial X2 — mX + c. So this is just
condition B°.



10 RICHARD G.E. PINCH
Criterion (%) =4+1| P (%) =-1 In general
A p—1N -1 p? —1|N — 1 p? —1|N — 1
A p— 1N -1 e(p+1)|N -1 lem{p — L,e(p+1)}|N —1
ATT p— 1N -1 2(p+1)|N -1 lem{p —1,2(p+ )}|N — 1
AL p—1/N -1 p+1/N -1 (p* —1)/2[N —1
A_ p—1/N? -1 p%l p? —1|N —p p? —1|N —p
AP elN—1]| 1 e(p+1)|N —p e(p+1)|N —p
and | fIN +1 and | fIN +1
AT (P—D/2AN+1]| 3 2p+ 1IN —p —
AL p— 1N +1 p+1]N +1 (p> —1)/2|N +1
B p—1N -1 p? —1|N —1 p? —1|N —1
or p2—1|N —p or p2—1|N —p
BP p—1N -1 e(p+1)|N -1 lem{p — l,e(p+ 1)}IN —1
ore(p+1)|N —p || orlem{p—1,e(p+1)}N—p
B! p—1|N -1 20+ 1N -1 lem{p—1,2(p+1)}|N —1
or2(p+1)[N—=p | orlem{p—1,2(p+ 1)}IN —p
B! p—1]N -1 p+ 1N -1 p—1|N+1
orp—1|N+1 orp+ 1N +1 andp+1|Nj:1

TABLE 1. Requirements for absolute pseudoprimes for criteria of
type A and B. Column P gives the proportion of bases for which
the criterion can be satisfied when this is not 1: the requirements
for such cases are boxed. e denotes the multiplicative order of b

modulo p and f =

(p—1)/e.

A strong Fibonacci pseudoprime is a strong Dickson-(—1) pseudoprime: this is

just condition B~1.
satisfying 2(p + 1)|[N — 1 or N

We find that such a pseudoprime is a Carmichael number
—p.

A superstrong Dickson pseudoprime is a strong Dickson-(c) pseudoprime for all ¢,
hence satisfies condition B. We require such a number to be a Carmichael number

with p? —1|N — 1 or N — p.

Gordon [8],[7], [9],[10] defines an D-elliptic pseudoprime to be an N such that

OF

1.

—1 and p+1|N +1 for all p|N, where —D is a discriminant of class-number

Williams [33] asked whether there are any Carmichael numbers N with an odd

number of prime divisors and the additional property that for p|N, p + 1|N + 1.
There are no such Carmichael numbers up to 10'®. We note that type II strong
Fibonacci pseudoprimes are a special case of this condition.

Jones® has defined various special kinds of Carmichael numbers N. A Lucas—
Carmichael-(—) number has the property that p|N implies (p —1)/2 and (p+1)/2
both divide N — 1: it is strong if p — 1 and p + 1 both divide N — 1 and unusually
strong if p* — 1 divides N — 1.

Iprivate communication.
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The five Lucas—Carmichael-(—) numbers up to 106 are

28295303263921 = 29-31-67-271-331-5237,
443372888629441 = 17-31-41-43-89-97-167 - 331,
582920080863121 = 41-53-79-103-239-271 - 509,
894221105778001 = 17-23-29-31-79-89-181 1999,

2013745337604001 = 17-37-41-131-251-571-4159.

The number 582920080863121 is a strong Lucas-Carmichael-(—) number, and a
pseudoprime for criterion Al+ and hence B'. The number 443372888629441 is un-
usually strong, and pseudoprime for criteria A, and Bj; hence also for A;l, Ai_,
B! and B!.

A Lucas—Carmichael-(+) number has the property that p|N implies (p — 1)/2
and (p+ 1)/2 both divide N + 1: it is strong if p — 1 and p + 1 both divide N — 1
and unusually strong if p> — 1|N + 1.

The seven Lucas-Carmichael-(4) numbers up to 10'3 are

6479 = 11-19-31,
84419 = 29-41-71,
1930499 = 89-109- 199,

7110179 = 37-41-43-109,
15857855 = 5-13-17-113-127,
63278892599 = 13-47-137-239- 3163,
79397009999 = 23-29-41-43-251 - 269.

Of these, 79397009999 is unusually strong. It is a pseudoprime for criteria AL and
B!

6. STRONG QUADRATIC TESTS

Arnault [1] defines a strong Lucas test for an odd number N as follows: let
€ = (%) and put N — e = 2"s with s odd. The criterion requires that either
Us =0mod N or Vy;, =0 for some j with 0 < j <.

He shows that the proportion of tests which falsely declare N prime is at most

1/2, and indeed at most 4/15 if N is not of the special form N = pg with p and
q = p + 2 twin primes and (%) = -1, (%) = +1.

Since Usy, = Ui V) by equation (3.4), the condition implies that Uy_. = 0 mod N
this is condition C' in the table above, and we have seen that it is equivalent to the

Fermat criterion for the corational groups C(N,d). The strong Lucas test is thus
the 2-strengthening of test C.

7. A BAYESIAN RESULT

We noted that for a given composite number, the probability of the strong test
incorrectly returning probable prime on a random base is at most %.

More important in practice is the probability that a number which has passed
the strong test is in fact composite. We consider, for example, a process which
chooses odd numbers N of a given size uniformly at random and outputs N if it
passes r rounds of the strong test with random bases. Damgard and Landrock [2]
and Kim and Pomerance [16] give results in this direction.

In this section we indicate how similar results may be obtained for the 2-strengthening
of criterion A.

It ios necessary to specify a sample space of integers to apply the test to: we
consider the space My of all odd k-bit integers taken uniformly at random. Our
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strategy is to find “small” subsets &,, of My such that if IV is composite and not
in &, then the probability that NV passes the test is also small.
Let ¥(N) = N — (%) Let &g = ® be the multiplicative function extending

O(p)=¥(p)=p— (%) for prime p.

Suppose N € My, and put N = prf For p; | N, let ¢; = hef(®(p;), T(N))
and let b;c; = ®(p;). We have a bound on the probability of composite N passing
the criterion

d
b.
N) <274 T =
uN) < -]‘:[pi

coming from the 2-strengthening part of the criterion.
Put X = 2¥. We have [M;| = 1X. Fix m with 2 < m < /k/2 and put
A=2m"15=1/m. Put Y = 1X°. Put

Em ={N € My, | N is composite, b; < A for some p;|N with p; > Y}.

Proposition 7.1. For 2 <m < +/k/2 the set &, of composite numbers satisfies

e (i) for composite N € My, \ &, we have u(N) < 27™;
o (ii) |Enl/IMy] = O(2) 2m—F/m.

Proof. Put
1 1 1
WN) = g [T = NHE

We first need to show (i). Suppose that N is composite and not in &,,.

If d > m then p(N) < 27™W(N) < 27™, as required. So we suppose that
N & &, and that d < m.

Suppose first that n ¢ &, because the prime factors p; of N all satisfy p; < Y.
Put D =[], pi- Now N/D is coprime to W(N) but divides ®(N): indeed

a(N) =N] (pl) :%H(p* 1).

p
p|N p|N

Now D <Y™ andN>%X, SO

1 1
N/D>NY™™ =N <2X5) > X/ X = om—1,
Now W(N) < D/N, so W(N) < 2'=™ and again u(N) < 27™,

Finally suppose that N has a prime factor p; > Y’; since N ¢ &,,,, we must have
b; > A. Then W(N) < 1/A and since u(N) < W(N)/2, we have u(N) < 1/2A =
2=,

We now prove part (ii). Fix a prime p > Y. Suppose N € &, because p|N
withp >Y and b < A. Now N =0 mod p and N = (%) mod ¢. Since ¢|p £ 1,
we have p and ¢ coprime, and so N satisfies a congruence condition modulo pc.
Since N cannot equal p, the number of such N in M, is at most %X /pc, which is
3Xb/p(p —1).

Summing over all p > Y and b < A, we have

1Xb X A? X A2
IEmISZZp(p_l)SZ é o( = )

p>Y b<A sy P

Theorem 7.2.
P(N composite|N passes r tests) = O(k 2**/5/2).
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Proof. We have

P(N composite and N passes r tests)
P(N passes r tests)

P(N composite| N passes r tests) =

Now

and

P(N composite and passes 1 tests) < P(N € &, and passes r tests)
+P(N composite and N ¢ &, and passes r tests)

e

P(N passes r tests) > P(N prime) > 1/k,

using the Prime Number Theorem. Hence

P(N composite| N passes r tests) < k(27" + O(% 22m*k/m>).

Now putting m = vk/2 we have

1]
2]

(3]

(4]

=

(10]
(11]

[12]
(13]

(14]
(15]
(16]
(17]

(18]

P(N composite|N passes r tests) = O(k?f‘/g/Q).
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