
ABSOLUTE QUADRATIC PSEUDOPRIMES
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Abstract. We describe some primality tests based on quadratic rings and
discuss the absolute pseudoprimes for these tests.

1. Introduction

We describe some primality tests based on quadratic rings and discuss the abso-
lute pseudoprimes for these tests.

2. Primality tests

We briefly recall some standard probabilistic primality tests. We assume through-
out that N is the integer under test, and that N is already known to be odd and
not a perfect power.

The Fermat criterion with base b is the condition bN−1 ≡ 1 mod N . We shall
usually distinguish between a criterion or condition, which is a necessary condition
for primality, and a test, which specifies the details of the application of that cri-
terion. For example, we would expect a Fermat test to include a preliminary trial
division (at least as far as 2), possibly a test to eliminate perfect powers, and to
specify a method (deterministic or random) for selecting the base b. A (Fermat)
probable prime base b is a number N which passes this test: a (Fermat) pseudoprime
is a composite number which passes. An absolute (Fermat) pseudoprime is a com-
posite number which satisfies the Fermat criterion for every base b with (b, n) = 1.
It is well-known that these are just the Carmichael numbers: N is a Carmichael
number iff N is square-free with at least three prime factors and p − 1|N − 1 for
every prime p dividing N .

For background on Carmichael numbers and details of previous computations we
refer to our previous paper [24]: in that paper we described the computation of the
Carmichael numbers up to 1015 and presented some statistics. These computations
have since been extended [26] to 1016, using the same techniques.

We can refine this to the Fermat–Euler criterion by requiring that b(N−1)/2 ≡
±1 mod N , and again by identifying the sign to form the Euler–Jacobi criterion
b(N−1)/2 ≡

(
b
N

)
mod N , where

(
b
N

)
is the Jacobi symbol. This latter is the primal-

ity criterion of Solovay–Strassen [31],[32].

Proposition 2.1. (1) If N is an absolute pseudoprime for the Fermat–Euler
criterion we have b(N−1)/2 ≡ +1 mod N for all b prime to N .

(2) There are no absolute pseudoprimes for the Euler–Jacobi criterion.

Proof. For the first part, suppose that p and q are distinct prime factors of N . Given
b prime to N , write b = b1b2 where b1 ≡ b mod p and ≡ 1 mod q; so we have b2 ≡
1 mod p and ≡ b mod q. The assumption on N implies that b

(N−1)/2
i ≡ ±1 mod N

for i = 1, 2, but in each case the sign must be +1 considering b
(N−1)/2
1 mod q and

b
(N−1)/2
2 mod p. So b(N−1)/2 = (b1b2)(N−1)/2 ≡ 1 mod N .
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The second part follows by observing that N is not a perfect square, so
(

b
N

)
= −1

for some b. �

The final extension to the Fermat criterion which we consider is the strong or
Miller–Rabin criterion [20],[21],[27]. Given an odd N , write N − 1 = 2rs, with s
odd, and for b mod N form the sequence

bs, b2s, . . . , b2r−1s, b2rs = bN−1 mod N

in which each term is the square of the preceding. The criterion requires that the
sequence end in 1, and further that the first occurence of 1 either be at the first
term, or be preceded by −1.

It is clear that the Miller–Rabin criterion includes the Fermat–Euler criterion: in
fact it includes the Euler–Jacobi criterion as well. There are thus no absolute pseu-
doprimes for this criterion: indeed, the proportion of bases b for which a composite
number can satsify the criterion is at most 1/4.

3. Quadratic rings

A variety of primality tests have been proposed which extend the Fermat test to a
quadratic ring. Let N and d be integers: we shall assume throughout that N is odd
and d is prime to N . Let R = R(N, d) denote the quadratic ring Z[X]/

〈
N,X2 − d

〉
.

It is natural to denote the image of X in this ring by
√

d. If M and N are co-
prime then the Chinese Remainder Theorem gives a natural isomorphism between
R(MN, d) and R(M,d)⊕ R(N, d), so we shall be interested in the case when N is
an odd prime power pf .

We define an automorphism ′ of R = R(N, d) by mapping
√

d 7→ −
√

d: this is
inudeced by the automorphism X 7→ −X of Z[X], which is compatible with the
quotient map. The fixed points of ′ form a subring F (N, d) which is just the copy
of Z/〈N〉 inside R. The norm of an element β is N (β) = ββ′: this map takes values
in Z/〈N〉. If N (β) is invertible (prime to N), then so is β, with β−1 = β′/N (β).
The unit group R∗ contains the corational or twisted multiplicative group C(N, d),
consisting of the elements of norm one. The action of ′ on C is given by β 7→ β−1.
The anti-norm is defined on R∗ by A(β) = β/β′.

We denote the set of elements of norm b by Cb(p, d). If non-empty, it is a coset
of C = C1.

3.1. Prime modulus. We first consider the case when N is a prime p. If d is a
quadratic non-residue of p then R is the field Fp2 , whereas if d is a quadratic residue
of p, then R is the direct sum Fp ⊕ Fp. Hence the unit group R∗ is either a cyclic
group of order p2 − 1 or a direct product of two cyclic groups of order p − 1. If R
is Fp2 , the automorphism ′ is the Frobenius automorphism β 7→ βp: otherwise it is
the interchange of the two direct summands.

The norm map is N (β) = βp+1 in Fp2 and (a, b) 7→ ab in Fp ⊕ Fp; the anti-norm
is A(β) = β1−p in Fp2 and (a, b) 7→ a/b in Fp ⊕ Fp.

The corational group C is either the subgroup generated by the anti-norm γp−1

of a generator γ of R∗ when R = Fp2 , or the set of elements corresponding to the

form (x, x−1) when R = Fp⊕Fp. It is cyclic of order p−
(

d
p

)
, that is, p+1 or p−1

respectively.
If β is an element of R then βp is either β′ or β in the two cases: we can express

this succinctly by saying that the Frobenius condition

(x + y
√

d)p = x +
(

d

p

)
y
√

d(3.1)

holds.
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The subring F fixed by ′ is the field Fp in each case, either as a subfield of Fp2

or as the diagonal in Fp ⊕ Fp. So in each case F ∗ is cyclic of order p− 1.
The norm map has kernel C and image F ∗. The anti-norm has kernel F ∗ and

image C. The restriction of the anti-norm to C is just β 7→ β2, with kernel C∩F ∗ =
{±1} and image a cyclic group of order

(
p−

(
d
p

))
/2.

When R = Fp2 , the norm map is surjective , so Cb is a non-empty coset of
C = C1, of order p + 1. When R = Fp ⊕ Fp then Cb = {(a, b/a) : a ∈ Fp} is a coset
of C of order p− 1.

We briefly consider the special case C−1. When R = Fp2 , this is the set of odd
powers of γ(p−1)/2, where γ is a generator of the cyclic group R∗. When R = Fp⊕Fp,
this is the set of pairs (b,−1/b) for b ∈ Fp

∗. We note that the map β 7→ β2 maps
C− onto C in the first case and onto the index 2 subgroup of pairs (b2, 1/b2) in the
second case.

Proposition 3.1. Let β ∈ Fp2 with N (β) = B. If the order of B in Fp
∗ is e, then

the order of β in Fp2
∗ is e(p + 1).

Proof. Let B = gf where ef = p − 1 and g is a generator of Fp
∗. Let γ be a

generator of Fp2
∗ with N (γ) = γp+1 = g, and let β = γr. We have N (β) = βp+1 =

γr(p+1) = B = gf = γ(p+1)f , so r(p+1) ≡ (p+1)f mod p2−1 and r ≡ f mod p−1,
say r = f + s(p− 1). Replacing γ by γ1+se, which is again a generator of Fp2

∗, we
may assume that β = γf . The order of β is then (p2 − 1)/f = e(p + 1). �

Lemma 3.2. Let G be a cyclic group of order r. The number of solutions to the
equation Xn = b in G is zero or (n, f) where the order of b in G is e and ef = r. For
solutions to exist, it is necessary and sufficient that n/(n, f) be prime to r/(n, f).

Proof. Choose a generator g of G so that b = gf , and put X = gy. The equation be-
comes ny ≡ f mod r, and hence y.n/(f, n) ≡ f/(f, n) mod r/(f, n). Since f/(f, n)
is coprime to n/(f, n), it is clearly necessary for solutions to exist that n/(n, f) be
coprime to r/(f, n).

Suppose now that this condition holds. The equation for y has a unique solution
y modulo r/(f, n), and hence (f, n) solutions modulo r. �

3.2. Prime powers. We now consider the structure of R(pf , d). The map ρ :
R(pf , d) → R(p, d) given by reduction modulo p is a ring homomorphism, with
kernel pR(pf , d) of order p2(f−1). An element β ∈ R(pf , d) is invertible iff the
norm N (β) is invertible in Z/

〈
pf
〉

iff N (β) is prime to p iff ρ(N (β)) = N (ρ(β)) is
invertible in Z/〈p〉 iff ρ(β) is invertible in R(p, d). So the restriction of ρ to R∗ is a
group homomorphism onto R(p, d)∗ and has kernel with order a power of p.

If d is a quadratic non-residue of p then it cannot be congruent to a square
modulo pf for any f . If d is a quadratic residue of p then by Hensel’s Lemma (since
p > 2), d is a square modulo pf for any f ≥ 1 and so R(pf , d) is isomorphic to the
direct sum Z/

〈
pf
〉
⊕ Z/

〈
pf
〉
.

The group R(pf , d)∗ is cyclic of order p2f−2(p2−1) if d is a quadratic non-residue
of p, since we can lift a generator of Fp2

∗ to a generator of R∗ (see, for example,
[25]). If d is a quadratic residue of p, then R∗ is Z/

〈
pf
〉∗⊕Z/

〈
pf
〉∗, a direct product

of two cyclic groups of order pf−1(p− 1).
We consider the cosets Cb. Again if

(
d
p

)
= +1 then Cb = {(a, b/a) : a ∈ Z/

〈
pf
〉
}

is a coset of C of order pf−1(p−1). If
(

d
p

)
= −1 then a solution to N (β) ≡ b mod p

can be lifted by Hensel’s Lemma to a solution modulo pf , so Cb is again a non-empty
coset of C, of order pf−1(p + 1).

Proposition 3.3. Let R = R(pf , d) with f > 1. There are elements of multiplica-
tive order divisible by p in every coset Cb.
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Proof. If
(

d
p

)
= +1 then Cb = {(a, b/a) : a ∈ Z/

〈
pf
〉
} and we can choose a to

have multiplicative order divisible by p: the order of the pair (a, b/a) will then be
a multiple of that of a and hence of p.

If
(

d
p

)
= −1, we consider the elements of order not divisible by p: there are

p2− 1 of these. Since the reduction map ρ is one-to-one on such elements, there are
p + 1 elements of order prime to p in C1 and so every coset Cb has at most p + 1
such elements. Hence each coset has elements of order divisible by p. �

Proposition 3.4. Let R = R(p, d). Let α ∈ C and b ∈ F . The equations N (β) = b,
A(β) = α are soluble if α and b are both squares or both non-squares in C and F
respectively.

Proof. If
(

d
p

)
= +1 then let β ↔ (r, s) ∈ Fp ⊕ Fp and α ↔ (a, 1/a). The equations

on β are equivalent to rs = b, r/s = a, and these are equivalent to r2 = ab, s2 = b/a.
These are soluble iff ab is a square in Fp, which is in turn equivalent to the stated
conditions on α and b.

If
(

d
p

)
= −1 then let γ be a generator of Fp

∗, and write β = γx, b = γ(p+1)y

and α = γ(p−1)z. The equations on β are equivalent to (p + 1)x ≡ (p + 1)y and
(p− 1)x ≡ (p− 1)z modulo p2− 1: these are equivalent to x ≡ y mod p− 1 and x ≡
z mod p + 1. By the Chinese Remainder Theorem these are soluble simultaneously
iff y ≡ z mod (p− 1, p+1), that is, modulo 2. Again this is equivalent to the stated
conditions on α and b. �

3.3. Lucas sequences. Let β = x + y
√

d satisfy the equation X2 − AX + B = 0
where A is the trace β + β′ and B is the norm ββ′. We define the Lucas sequences
Uk(A,B) and Vk(A,B) associated to β by

Uk =
βk − β′

k

β − β′
(3.2)

Vk = βk + β′
k(3.3)

or equivalently

βk =
Vk + Uk

√
d

2
.

There are recurrence relationships

U0 = 0, U1 = 1, Uk+1 = AUk −BUk−1

V0 = 2, V1 = A, Vk+1 = AVk −BVk−1

There are fast formulae for evaluating U and V using the duplication formulae

U2k = UkVk(3.4)

V2k = V 2
k − 2Bk(3.5)

and

U2k+1 = Uk+1Vk −Bk(3.6)

V2k+1 = Vk+1Vk −ABk(3.7)

which are particularly convenient if B = ±1: see, for example, Riesel [28] (4.30–47)
and Joye and Quisquater [15].

The Dickson polynomials gk(X,−B) are defined by

gk(X,−B) =
bk/2c∑
j=0

k

k − j

(
k − j

j

)
(−B)jXk−2j

and have the property that
Vk = gk(−A,−B).
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See Lidl and Niederreiter [19] (7.6).

4. Fermat-type tests and strengthening

We can generalise the notion of the Fermat test to other families of groups. Let
G be a family of abelian groups G(N) defined for all positive integers N composed
of integers from some infinite set P of primes. We suppose that these groups
satisfy the Chinese Remainder property, that is, G(MN) ∼= G(M)⊕G(N) whenever
M and N are coprime. We also assume that the group operations in G(N) are
easy to perform. We denote the order of G(N) by φG(N) and the exponent by
λG(N). We suppose that there is a function F (N) which is easily computable and
agrees with λG(N) whenever N is prime. We further suppose that the groups in G
have the splitting property: if x ∈ G(MN) is a splitting element, that is, satisfies
x = (1, z) ∈ G(M)⊕G(N), where 1 is the identity of G(M) and z is not the identity
of G(N), then there is a fast algorithm for factoring MN .

The G-Fermat test for primality of N is to take a random element of b ∈ G(N)
and to test whether bF (N) is the identity in G(N). If not, N is certainly composite:
otherwise we call N an G-probable prime, and an G-pseudoprime if it is in fact
composite. An absolute G-pseudoprime has this property whenever b ∈ G(N).

The first example of such a system is the multiplicative group G(N) = (Z/〈N〉)∗.
We have P = { all primes } and F (p) = p − 1. The splitting property is achieved
by applying Euclid’s algorithm to find hcf{x− 1, N} if x is a splitting element.

We can express a number of the quadratic tests in the same framework, using
groups associated to the quadratic ring R(N, d). If we take G(N) to be the unit
group C in R(N, d)∗, then F (p) = p−

(
d
p

)
, and the Fermat condition becomes test

A1.
Now let π be a prime: we shall usually take π = 2. We assume throughout that

N is always prime to π. Define the π-strengthening of the G-Fermat test for N by
writing f(N) = πrs with s prime to π, and forming the sequence

bs, bπs, . . . , bπrs ∈ G(N) :

the test requires that the sequence end in 1, which is the Fermat condition, and
further that the first occurence of 1 in the sequence not be preceded by a splitting
element.

The Miller–Rabin test is the 2-strengthening of the usual Fermat test: a splitting
element will be an e 6≡ 1 mod N with e2 ≡ 1, by considering hcf{e± 1, N}.

We can express the effect of the π-strengthening by letting oπ(b, G(N)) be the
power of π dividing the order of b in the group G(N). The additional requirement of
the π-strengthening is that the value of oπ(b, G(pai

i )) should be the same for every
prime power pai

i dividing N . If so, we call this common value the level of b: it is
the position in the sequence of the first occurrence of 1.

For a group G(pa), we define the π-dimension d of G(pa) as the dimension of the
elements of G(pa) of order dividing π as a vector space over Fπ, and the π-height h
of G(pa) as the maximal power of π dividing the order of any element of G(pa): so
h is the largest value of any oπ(b, G(pa)). In particular, each of πd and πh divides
φG(pa) and πh divides λG(pa).

4.1. Groups of dimension 1. Suppose for the moment that the dimension d = 1,
so that the π-part of G(pa) is cyclic and φG(pa) = πhm with m prime to π. Let
c(l) denote the proportion of b ∈ G(pa) for which oπ(b, G(pa)) = l. We have c(0)
equal to the proportion of elements x of G(pa) which satisfy xm = 1, so c(0) =
m/φG(pa) = π−h. Each subsequent c(l) for 0 < l ≤ h is the proportion of elements
of G(pa) which satisfy xπlm = 1 but not xπl−1m = 1, that is, c(l) = πl−h(1− π−1).
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Put N =
∏t

i=1 pai
i . Let ci(l) denote the proportion of b ∈ G(pai

i ) for which
oπ(b, G(pai

i )) = l. Let W (N) be the number of element of G(N) which satisfy
the Fermat part of the criterion, and Sπ(N) the number which satisfy the π-
strengthening. We have

Sπ(N) = W (N)
r∑

l=0

t∏
i=1

ci(l).

Proposition 4.1. Suppose that d = 1. Let F (N) = πrs with s prime to π. The
proportion of elements which satisfy the π-strengthening of the Fermat criterion is
at most π−H if r or one of the hi is zero, and at most π1−t otherwise.

Proof. Let S =
∑r

l=0

∏t
i=1 ci(l). Put H =

∑
i hi and let ρ = min{r, hi}. The term∏t

i=1 ci(l) is π−H for l = 0; πtl−H−t for l ≤ ρ; and zero otherwise.
If ρ = 0 then S =

∏t
i=1 ci(0) = π−H . So consider the case ρ ≥ 1. We have all

the hi ≥ 1 and H ≥ ρt ≥ t ≥ 1. So

S = π−H

(
1 +

ρ∑
l=1

πt(l−1)

)
= π−H

(
1 +

πtρ − 1
πt − 1

)
Suppose that 0 ≤ a ≤ H − 1. We have(

πH−a − π
)
(πa − 1) ≥ 0

and, rearranging, πH + π1 ≥ πH−a + π1+a (alternatively, consider them as integers
written in base π). So

πH + π ≥ πH+1−t + πt,

πH+1 + π ≥ πH + πH+1−t + πt,

πρt − 1 ≤ πH − 1 ≤ πH+1 − πt − πH+1−t + 1 =
(
πt − 1

) (
πH+1−t − 1

)
πρt − 1
πt − 1

+ 1 ≤ πH+1−t

giving S ≤ π1−t as required. �

5. Quadratic primality tests

We can use the Frobenius criterion (3.1) as a primality testing criterion. Given
N , we select an arbitrary d prime to N and β = x + y

√
d. The symbol

(
d
N

)
is

interpreted as the Jacobi symbol: its computation can be carried our by a variant
of the Euclidean Algorithm and verifies that (d, n) = 1 as a by-product. We require
that B = N (β) be prime to N and then that the Frobenius condition hold for N
to be declared probably prime. See Grantham [12, 11].

There are a number of specialisations of this condition. We let A denote the
Frobenius condition (3.1) for the number N : that is, for any β = x + y

√
d we have

VN ≡ x and UN ≡
(

d
N

)
y modulo N , where Uk and Vk are the Lucas sequences

(3.3) associated to β. We let B denote the condition that VN ≡ x mod N , and C
the condition that UN−ε ≡ 0 mod N , where ε =

(
d
N

)
.

Let X denote one of these conditions. We introduce some notation for various
specialisations of the condition X. We let X(d) denote the requirement that the
condition hold for a given discriminant d. We let Xε, where ε is + or −, denote
the requirement that the condition hold whenever

(
d
N

)
= ε. We let Xb denote the

requirement that the condition hold for all β with norm b. So A1
−, for example,

denotes the condition that βN = β′ for all β = x + y
√

d of norm 1 with
(

d
N

)
= −1.

We refer to these conditions collectively as quadratic primality criteria.

Proposition 5.1. For given ε = ±1, the conditions Bε and Cε together are equiv-
alent to Aε.
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Proof. It is clear that Aε implies both of Bε and Cε. In the other direction, suppose
that β = x + y

√
d satisfies both of Bε and Cε, where

(
d
N

)
= ε.

If ε = +1 we have βN = x + z
√

d for some z and βN−1 = v + 0
√

d. So βN =
vβ = vx+vz

√
d. Equating coefficients, we have vx ≡ x mod N , so v ≡ 1 and z ≡ y:

that is, βN ≡ β.
If ε = −1 we have βN = x + z

√
d for some z and βN+1 = v + 0

√
d. So βN =

vβ′/B = (v/B)(x−y
√

d). Equating coefficients, we must have v = B and βN ≡ β′.
So in each case condition Aε is satisfied. �

We note that the result applies to the specialisations Ab
ε, Bb

ε , Cb
ε .

Consider condition A−, which requires that βN ≡ β′ mod N . This implies that
βN+1 = ββ′ = B, and so implies that BN−1 ≡ 1 mod N . It also implies that
(β/β′)N = β′/β, so αN+1 = 1 for all α in the corational group C1. We can thus
interpret criterion A− or A as including the conventional Fermat criterion and its
analogue for the corational group.

5.1. Absolute quadratic pseudoprimes. We consider composite numbers satis-
fying one of these criteria for all permissible choices of β: we call such a number an
absolute pseudoprime for the relevant criterion.

We put β = x + y
√

d with norm B = x2 − dy2. We assume throughout that N
is not a prime power, that N is prime to 6dB and that, if B 6= 1 then N is prime
to B − 1.

Proposition 5.2. (1) An absolute pseudoprime for criteria A+, A− or B must
be a Carmichael number.

(2) There are no absolute pseudoprimes for criterion A.
(3) An absolute pseudoprime for criterion A−1

ε must also be an absolute pseu-
doprime for criterion A1

ε for each ε = ±1.
(4) The criteria C± are equivalent to A1

± respectively.
(5) An absolute pseudoprime for a criterion Ab

+ must be a Carmichael number.
(6) An absolute pseudoprime for a criterion Ab

±(d) must be square-free.

Proof. (1) Consider β = x + 0
√

d. The condition implies xn ≡ x mod N , for
any value of x, and so N must be a Carmichael number.

(2) Consider β =
√

d. The condition implies d(N−1)/2 ≡
(

d
N

)
mod N , for which

it is already known there are no absolute pseudoprimes by Proposition 2.1.
(3) Consider the map β 7→ β2 for d with

(
d
p

)
= −1. As already noted this map

on C−1 is onto C1 and the Frobenius condition holds for β2 if it holds for
β. So if condition A−1

± holds for all β ∈ C−1, then condition A1
± must hold

for all α ∈ C1.
(4) We have UN−ε ≡ 0 mod N all β iff βN−ε ∈ F all β iff βN−ε = (β′)N−ε all

β iff αN−ε = 1 all α ∈ C, since the anti-norm is onto C, iff αN = α resp.
α′ all α ∈ C.

(5) Suppose pf is a prime power factor of N and
(

d
p

)
= +1. We have (a, b/a)N ≡

(a, b/a) mod pf , so in particular aN ≡ a mod pf for any a, and any pf |N .
Hence N must be a Carmichael number.

(6) The map β 7→ βN is required to be a permutation of the appropriate set
Cb. But if pf divides N with f > 1 then by Proposition 3.3 the coset Cb in
R(pf , d) contains elements of order divisible by p and the map cannot be
one-to-one on such elements.

�

Indeed, we can strengthen (4) by noting that from Lemma 3.4 the conditions Cb
±

for two values of b, one a quadratic residue and the other a quadratic non-residue,
together imply A1

±.
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Theorem 5.3. (1) The requirements for an absolute pseudoprime for each of
the quadratic criteria are those given in Table 1.

(2) There are no absolute pseudoprimes for criteria Ab
− (b 6= 1), A−, A1 or A.

Proof. Suppose that p is a prime factor of N and that N satisfies one of the condi-
tions stated. We let β = x + y

√
d with norm B = x2 − dy2.

A+: We have βN ≡ β mod p, so βN−1 ≡ 1 mod p. The order of β modulo p

can be p2 − 1 or p − 1 according as
(

d
p

)
= −1 or +1: we require either

p2 − 1|N − 1 or p − 1|N − 1 respectively. Since the value of
(

d
p

)
is not

constrained by knowing
(

d
N

)
, we require p2 − 1|N − 1.

Ab
+: We have βN ≡ β mod p for B = b. The order of such β modulo p can

be e(p + 1) or p − 1 according as
(

d
p

)
= −1 or +1, where e denotes the

multiplicative order of b in Fp
∗. We require lcm{p − 1, e(p + 1)} to divide

N − 1.
A1

+: We have βN ≡ β mod p for B = 1. The order of β modulo p can be p−(
d
p

)
and we require p−

(
d
p

)
|N−1. Again the value of

(
d
p

)
is unconstrained

so we require lcm{p− 1, p + 1} =
(
p2 − 1

)
/2 to divide N − 1.

A−: We have βN ≡ β′ mod p. If
(

d
p

)
= −1 then βN = β′ = βp and we require

the order of β, which can be p2 − 1, to divide N − p. If
(

d
p

)
= +1 then

it can be the case that β′ is not equal to any power of β in R∗, which is
not cyclic: for example, suppose β corresponds to (1,−1) ∈ Fp⊕Fp so that
β′ ↔ (−1, 1). So there is no condition on p and N which will guarantee
that N satisfies the condition in this case. We note that if β corresponds to
(a, b) ∈ Fp ⊕ Fp, then we are requiring that aN ≡ b and bN ≡ a. So the β

which satisfy this condition are the β ↔ (a, aN ) with aN2 ≡ a mod p: the
number of such β is maximised when p− 1|N2− 1, and there are then p− 1
such values of β.

Ab
−: We have βN ≡ β′ mod p when B = b: we assume b 6= 1. If

(
d
p

)
= −1

then βN = β′ = βp and we require the order of β, which can be e(p + 1),
to divide N − p, where e is the order of b in Fp

∗. If
(

d
p

)
= +1 then it can

again be the case that β′ is not equal to any power of β: consider β ↔
(1, b). Again there is no condition on p and N which will guarantee that N
satisfies the condition. If β ↔ (a, b/a), we are requiring that aN ≡ b/a and
(b/a)N ≡ a mod p. So we require aN+1 ≡ b and aN+1 ≡ bN mod p, which
is impossible unless bN ≡ b mod p, which is equivalent to the condition that
e|N − 1 where e is the multiplicative order of b mod p. We now have the
condition that aN+1 ≡ b mod p. Put p−1 = ef . By Lemma 3.2 the number
of solutions to this equation is maximised when f |N + 1 and n/f is prime
to e: when this occurs, the number of solutions is f .

A1
−: Again we have βN ≡ β′ mod p when B = 1, so βN+1 ≡ 1 mod p. The

order of β can be the order of C, that is, p −
(

d
p

)
, so we require lcm{p −

1, p + 1} =
(
p2 − 1

)
/2 to divide N + 1.

B: We have βN = (x + y
√

d)N = x + z
√

d for some z. Since N is necessarily
a Carmichael number, we have βN (β′)N = (ββ′)N = BN ≡ B mod N , so
that z2 ≡ y2 mod N if this condition is satisfied. For any p dividing N
we therefore have z ≡ ±y mod p, so that βN = β or β′ in R(p, d). The
condition βN = β′ need not hold in the case

(
d
p

)
= +1, as discussed in

case A−, and there is no condition on p and N which will ensure that this
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holds. The condition βN = β is equivalent to requiring that the order of β,
which can be p2 − 1, divide N − 1.

Bb
±: We have βN ≡ (x + y

√
d)N ≡ x + z

√
d mod N for some z whenever

N (β) = x2 − dy2 = b. Suppose that pf is a prime power factor of N with(
d
p

)
= +1. Consider β ↔ (1, b) ∈ Z/

〈
pf
〉
⊕ Z/

〈
pf
〉
, so that βN ↔ (1, bN ).

We have 1 + b ≡ 1 + bN mod pf , so that bN ≡ b mod pf . Now consider
β ↔ (a, b/a). We have a + b/a ≡ aN + bN/aN ≡ aN + b/aN mod pf . So
(aN−1 − 1)a ≡ b(aN−1 − 1)/aN , that is, (aN−1 − 1)(a− b/aN ) ≡ 0 mod pf .
If b 6≡ 1 mod p it cannot happen that aN+1 ≡ b mod pf for all a mod pf ,
so we require that aN−1 ≡ 1 mod pf for all a: that is, that f = 1 and
p − 1|N − 1. If b ≡ 1 mod p then the two factors aN−1 − 1 and aN+1 − b
cannot both be divisible by p unless a ≡ ±1 mod p. This cannot be the
case since p > 3. So the alternative condition f = 1 and p − 1|N + 1 will
also suffice to ensure that the condition holds. We see that in any case N
must be squarefree.

Now consider the case when
(

d
p

)
= −1. Suppose p|N . We have βN +

(β′)N ≡ β + β′ mod p, so βN + (b/β)N ≡ β + b/β. We have βN − β ≡
b(βN − β)/βN+1, so (βN − β)(1 − b/βN+1) ≡ 0 mod p. The two factors
cannot both be divisible by p unless βN−1 ≡ 1 and βN+1 ≡ b mod p, which
entail β2 ≡ b: since ββ′ ≡ b this requires β ≡ β′ mod p. Otherwise, we have
the alternative conditions βN−1 ≡ 1 mod p or βN+1 ≡ b mod p. Since by
Proposition 3.1 the order of β can be e(p + 1), where e is the multiplicative
order of b mod p, we require e(p+1)|N−1 for the first condition to hold. For
the second condition we have βN+1 ≡ b mod p iff βN+1 ≡ ββ′ iff βN ≡ β′

iff βN ≡ βp, which requires that e(p + 1)|N − p.
B−1: We have b = −1, so the multiplicative order of b is 2. We require that

N be square-free, that p− 1|N − 1 and that 2(p + 1) divide either N − 1 or
N − p for each p.

B1: We have b = 1, so the multiplicative order of b is 1. We require that N
be square-free, that p− 1|N ± 1 and that p + 1 divide N − 1 or N − p.

�

Lidl, Müller and Oswald [17], [18], [23] characterize a strong Fibonacci pseu-
doprime as a Carmichael number N =

∏
pi with one of the following properties:

either (Type I) an even number of the pi are ≡ 3 mod 4 with p2 − 1|N − 1 for the
pi ≡ 3 mod 4 and pi + 1|N ± 1 for the pi ≡ 1 mod 4; or (Type II) there is an odd
number of pi, all ≡ 3 mod 4, and p2

i −1|N−pi for all pi. (A strong type II Fibonacci
pseudoprime is termed a strong (−1)-Dickson pseudoprime in [23].) They were not
able to exhibit any such numbers. We found just one Type I strong Fibonacci
pseudoprime less than 1016, already mentioned in [24], namely

443372888629441 = 17 · 31 · 41 · 43 · 89 · 97 · 167 · 331,

and none of Type II. This also answered the question of Di Porto and Filipponi [5].
Guillaume and Morain [13] quote Williams [33] as defining a ∆-Lucas pseudo-

prime by the condition UN−ε ≡ 0 mod N for all Lucas sequences with defining
equation X2 −PX + Q with P 2 − 4Q = ∆ and (N,∆Q) = 1. The is just condition
C(∆), equivalent to A1(∆) by Proposition 5.2 (4). We recover the result that N is
an absolute pseudoprime for this test iff N is square-free and p− εp|N − εN .

Guillaume and Morain [13] further define a strong Dickson-(c) pseudoprime if the
Dickson polynomial gN (m, c) ≡ m mod N for all m. This is equivalent to VN ≡ m
for the Lucas sequence attached to the polynomial X2 − mX + c. So this is just
condition Bc.
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Criterion
(

d
p

)
= +1 P

(
d
p

)
= −1 In general

A+ p− 1|N − 1 p2 − 1|N − 1 p2 − 1|N − 1

Ab
+ p− 1|N − 1 e(p + 1)|N − 1 lcm{p− 1, e(p + 1)}|N − 1

A−1
+ p− 1|N − 1 2(p + 1)|N − 1 lcm{p− 1, 2(p + 1)}|N − 1

A1
+ p− 1|N − 1 p + 1|N − 1 (p2 − 1)/2|N − 1

A− p− 1|N2 − 1 1
p−1 p2 − 1|N − p p2 − 1|N − p

Ab
− e|N − 1 1

e e(p + 1)|N − p e(p + 1)|N − p

and f |N + 1 and f |N + 1

A−1
− (p− 1)/2|N + 1 1

2 2(p + 1)|N − p —

A1
− p− 1|N + 1 p + 1|N + 1 (p2 − 1)/2|N + 1

B p− 1|N − 1 p2 − 1|N − 1 p2 − 1|N − 1
or p2 − 1|N − p or p2 − 1|N − p

Bb p− 1|N − 1 e(p + 1)|N − 1 lcm{p− 1, e(p + 1)}|N − 1
or e(p + 1)|N − p or lcm{p− 1, e(p + 1)}|N − p

B−1 p− 1|N − 1 2(p + 1)|N − 1 lcm{p− 1, 2(p + 1)}|N − 1
or 2(p + 1)|N − p or lcm{p− 1, 2(p + 1)}|N − p

B1 p− 1|N − 1 p + 1|N − 1 p− 1|N ± 1
or p− 1|N + 1 or p + 1|N + 1 and p + 1|N ± 1

Table 1. Requirements for absolute pseudoprimes for criteria of
type A and B. Column P gives the proportion of bases for which
the criterion can be satisfied when this is not 1: the requirements
for such cases are boxed. e denotes the multiplicative order of b
modulo p and f = (p− 1)/e.

A strong Fibonacci pseudoprime is a strong Dickson-(−1) pseudoprime: this is
just condition B−1. We find that such a pseudoprime is a Carmichael number
satisfying 2(p + 1)|N − 1 or N − p.

A superstrong Dickson pseudoprime is a strong Dickson-(c) pseudoprime for all c,
hence satisfies condition B. We require such a number to be a Carmichael number
with p2 − 1|N − 1 or N − p.

Gordon [8],[7], [9],[10] defines an D-elliptic pseudoprime to be an N such that(
D
p

)
= −1 and p+1|N +1 for all p|N , where −D is a discriminant of class-number

1.
Williams [33] asked whether there are any Carmichael numbers N with an odd

number of prime divisors and the additional property that for p|N , p + 1|N + 1.
There are no such Carmichael numbers up to 1016. We note that type II strong
Fibonacci pseudoprimes are a special case of this condition.

Jones1 has defined various special kinds of Carmichael numbers N . A Lucas–
Carmichael-(−) number has the property that p|N implies (p− 1)/2 and (p + 1)/2
both divide N − 1: it is strong if p− 1 and p + 1 both divide N − 1 and unusually
strong if p2 − 1 divides N − 1.

1Private communication.
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The five Lucas–Carmichael-(−) numbers up to 1016 are

28295303263921 = 29 · 31 · 67 · 271 · 331 · 5237,

443372888629441 = 17 · 31 · 41 · 43 · 89 · 97 · 167 · 331,

582920080863121 = 41 · 53 · 79 · 103 · 239 · 271 · 509,

894221105778001 = 17 · 23 · 29 · 31 · 79 · 89 · 181 · 1999,

2013745337604001 = 17 · 37 · 41 · 131 · 251 · 571 · 4159.

The number 582920080863121 is a strong Lucas–Carmichael-(−) number, and a
pseudoprime for criterion A1

+ and hence B1. The number 443372888629441 is un-
usually strong, and pseudoprime for criteria A+ and B; hence also for A−1

+ , A1
+,

B−1 and B1.
A Lucas–Carmichael-(+) number has the property that p|N implies (p − 1)/2

and (p + 1)/2 both divide N + 1: it is strong if p− 1 and p + 1 both divide N − 1
and unusually strong if p2 − 1|N + 1.

The seven Lucas–Carmichael-(+) numbers up to 1013 are

6479 = 11 · 19 · 31,

84419 = 29 · 41 · 71,

1930499 = 89 · 109 · 199,

7110179 = 37 · 41 · 43 · 109,

15857855 = 5 · 13 · 17 · 113 · 127,

63278892599 = 13 · 47 · 137 · 239 · 3163,

79397009999 = 23 · 29 · 41 · 43 · 251 · 269.

Of these, 79397009999 is unusually strong. It is a pseudoprime for criteria A1
− and

B1.

6. Strong quadratic tests

Arnault [1] defines a strong Lucas test for an odd number N as follows: let
ε =

(
d
N

)
and put N − ε = 2rs with s odd. The criterion requires that either

Us ≡ 0 mod N or V2js ≡ 0 for some j with 0 ≤ j < r.
He shows that the proportion of tests which falsely declare N prime is at most

1/2, and indeed at most 4/15 if N is not of the special form N = pq with p and
q = p + 2 twin primes and

(
D
p

)
= −1,

(
D
q

)
= +1.

Since U2k = UkVl by equation (3.4), the condition implies that UN−ε ≡ 0 mod N :
this is condition C in the table above, and we have seen that it is equivalent to the
Fermat criterion for the corational groups C(N, d). The strong Lucas test is thus
the 2-strengthening of test C.

7. A Bayesian result

We noted that for a given composite number, the probability of the strong test
incorrectly returning probable prime on a random base is at most 1

4 .
More important in practice is the probability that a number which has passed

the strong test is in fact composite. We consider, for example, a process which
chooses odd numbers N of a given size uniformly at random and outputs N if it
passes r rounds of the strong test with random bases. Damg̊ard and Landrock [2]
and Kim and Pomerance [16] give results in this direction.

In this section we indicate how similar results may be obtained for the 2-strengthening
of criterion A.

It ios necessary to specify a sample space of integers to apply the test to: we
consider the space Mk of all odd k-bit integers taken uniformly at random. Our
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strategy is to find “small” subsets Em of Mk such that if N is composite and not
in Em then the probability that N passes the test is also small.

Let Ψ(N) = N −
(

d
N

)
. Let ΦG = Φ be the multiplicative function extending

Φ(p) = Ψ(p) = p−
(

d
p

)
for prime p.

Suppose N ∈ Mk, and put N =
∏d

i pai
i . For pi | N , let ci = hcf(Φ(pi),Ψ(N))

and let bici = Φ(pi). We have a bound on the probability of composite N passing
the criterion

µ(N) ≤ 2−d+1
d∏

i=1

bi

pi

coming from the 2-strengthening part of the criterion.
Put X = 2k. We have |Mk| = 1

4X. Fix m with 2 ≤ m ≤
√

k/2 and put
A = 2m−1, δ = 1/m. Put Y = 1

2Xδ. Put

Em = {N ∈Mk | N is composite, bi < A for some pi|N with pi > Y } .

Proposition 7.1. For 2 ≤ m ≤
√

k/2 the set Em of composite numbers satisfies
• (i) for composite N ∈Mk \ Em, we have µ(N) ≤ 2−m;
• (ii) |Em|/|Mk| = O

(
m
k

)
22m−k/m.

Proof. Put

W (N) =
1

Ψ(N)

∏
i

ci =
1
N

∏
i

1
bi

We first need to show (i). Suppose that N is composite and not in Em.
If d > m then µ(N) ≤ 2−mW (N) ≤ 2−m, as required. So we suppose that

N 6∈ Em and that d ≤ m.
Suppose first that n /∈ Em because the prime factors pi of N all satisfy pi < Y .

Put D =
∏

i pi. Now N/D is coprime to Ψ(N) but divides Φ(N): indeed

Φ(N) = N
∏
p|N

(
p− 1

p

)
=

N

D

∏
p|N

(p− 1).

Now D < Y m and N > 1
2X, so

N/D ≥ NY −m = N

(
1
2
Xδ

)−m

≥ 1
2
X/2−mX = 2m−1.

Now W (N) ≤ D/N , so W (N) ≤ 21−m and again µ(N) ≤ 2−m.
Finally suppose that N has a prime factor pi > Y ; since N 6∈ Em, we must have

bi > A. Then W (N) < 1/A and since µ(N) ≤ W (N)/2, we have µ(N) < 1/2A =
2−m.

We now prove part (ii). Fix a prime p > Y . Suppose N ∈ Em because p|N
with p > Y and b < A. Now N ≡ 0 mod p and N ≡

(
d
N

)
mod c. Since c|p ± 1,

we have p and c coprime, and so N satisfies a congruence condition modulo pc.
Since N cannot equal p, the number of such N in Mk is at most 1

2X/pc, which is
1
2Xb/p(p− 1).

Summing over all p > Y and b < A, we have

|Em| ≤
∑
p>Y

∑
b<A

1
2Xb

p(p− 1)
≤
∑
p>Y

XA2

p2
= O

(
XA2

Y

)
.

�

Theorem 7.2.

P(N composite|N passes r tests) = O
(
k 2−

√
k/2
)
.
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Proof. We have

P(N composite|N passes r tests) =
P(N composite and N passes r tests)

P(N passes r tests)

Now

P(N composite and passes r tests) < P(N ∈ Em and passes r tests)
+P(N composite and N /∈ Em and passes r tests)

< 2−m + O
(m

k
22m−k/m

)
and

P(N passes r tests) > P(N prime) > 1/k,

using the Prime Number Theorem. Hence

P(N composite|N passes r tests) < k(2−m + O
(m

k
22m−k/m

)
).

Now putting m =
√

k/2 we have

P(N composite|N passes r tests) = O
(
k2−

√
k/2
)
.

�
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