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Abstract. We show that the inadvertent use of a Carmichael number in-
stead of a prime factor in the modulus of an RSA cryptosystem is likely to
make the system fatally vulnerable, but that such numbers may be detected.

1 Introduction

Huthnance and Warndof [12] comment that if one of the factors of the modulus
in an RSA cryptosystem [23] is a Carmichael number rather than a prime, the
cryptosystem will still work as expected. In this note we show that for the currently
popular choice of 512 bit moduli, this would bring the modulus within the range
of the elliptic curve factoring method [15], and that the most probable Carmichael
numbers which might arise from currently popular primality tests can be factored
very quickly by the p + 1 method [26].

2 Primality tests

Many primality tests in current use [18],[19] are based on some form of the Fermat
criterion: P is composite unless b~ = 1 mod P. A Carmichael number is a com-
posite number which satisfies the Fermat condition for all b coprime to P: hence the
Fermat test is no more likely to reveal compositeness in this case than trial division.

The Fermat condition can be strengthened at little extra computational cost
to the “strong” or Miller—-Rabin criterion: putting P — 1 = 2"s, with s odd, the
sequence

b*, 62,625, b2 = b1 mod P

should end in 1 (the Fermat condition) and the last term which is not 1 (if any)
should be —1 mod P. There are no analogues of Carmichael numbers for this test;
indeed, for composite P the proportion of b mod P for which the criterion holds is
less than 1/4. In each case we refer to a composite number which passes the test as
a pseudoprime for that test.

Version 2 of the popular PGP implementation [27],[28] of the RSA cryptosystem
uses four rounds of the Fermat test, with b = 2, 3, 5 and 7, and declares a number
prime if it passes all four tests. The RSA Inc. B/SAFE toolkit uses four rounds of
the Miller—Rabin test [13] with bases b =3, 5, 7 and 11.

The composite numbers most likely to satisfy these criteria, and hence be falsely
accepted as primes were classified by Damgard, Landrock and Pomerance [7],[8].
They showed that the most likely class of composites to escape detection are
Carmichael numbers with three prime factors.

Huthnance and Warndof observed that RSA encryption and decryption [12] can
be regarded as an elaborate form of the Fermat test, and hence that if an RSA
modulus is formed inadvertently using a Carmichael number instead of a prime
factor, then the cryptosystem will still function correctly. They argue that it is
therefore unnecessary to pursue any more elaborate primality tests.

We maintain in this paper that this is dangerous advice.



3 Carmichael numbers

We record from [17] that a Carmichael number N has the following properties: N
is square-free; N has at least three prime factors; p | N implies p—1 | N — 1 and
p<+VN.

A simple method of generating Carmichael numbers is due to Chernick [6]. If
the three factors in N = (6k + 1)(12k + 1)(18k + 1) are simultaneously prime, then
N is a Carmichael number. It is not yet known whether there are infinitely many
Carmichael numbers of Chernick form, although this would follow from the more
general conjecture of Dickson [11].

We are interested in Carmichael numbers with three prime factors. Their distri-
bution has been studied by Balasubramanian and Nagaraj [4], who show that the
number of such Carmichael numbers up to z is at most O(x5/14+€). If N = pgr
is a Carmichael number then we have p — 1 = ha, ¢g — 1 = hband r — 1 = hc
where a,b,c are coprime and habe | N — 1. So h must satisfy the congruence
h(ab + bc + ca) = —(a + b + ¢) mod abe. The Chernick form is the case a = 1,
b=2, ¢c= 3, leading to h = 0 mod 6. We see that most values of (a,b,c) will lead
to a possible congruence for h mod abc, whose smallest solution may be expected
to be of the same order as abc.

Using the methods of [17] we have been able to compute the Carmichael numbers
up to 10'® with three prime factors!. There are 35585 of them (compared with 24
739 954 287 740 860 primes: Deléglise and Rivat [9],[10]).

Of these 35585 Carmichael numbers, 783 correspond to the Chernick form with
parameters (a,b,c) = (1,2, 3) and a total of 4091 have (a, b) = (1,2). There were no
other cases with b/a = 2. We may expect small values of abc to predominate since
in general we may expect h to about the same order as abc and thus N to be at
least (abc)?.

4 Detecting Carmichael numbers with three prime factors

Let us consider how to guard against the possiblity that a number P generated
during the construction of an RSA modulus is composite: we consider especially
the case of detecting Carmichael numbers.

We should point out that this event is somewhat unlikely. The exact compu-
tations for 18-digits numbers shows that Carmichael numbers are extremely rare
compared to primes.

We can apply a primality proving method such as ECPP [3] or APR-CL [2] to P.
Such methods are applicable in general and quite practical for numbers of hundreds
of decimal digits.

We note that one prime factor of a Carmichael number P has to be less that
P/3_ For an RSA modulus of 512 bits, we can assume that P is about 2256 and so
has a factor at most 28, about 1026. Such factors may be routinely extracted by the
elliptic curve factoring method (ECM) of Lenstra [15]. For a modulus of 1024 bits,
the smallest factor of P could be over 50 digits and this is just beyond the present
extreme of the ECM (47 digits in a 135-digit factor of 5256 + 1 by Montgomery in
December 1995).

We note that Carmichael numbers of any fixed form, for example, with given
values of (a, b, ¢) but unknown h can be detected quickly by solving a single equation
in h as a real variable. We demonstrate in the next section that a Carmichael number
with parameters satisfying b/a = 2 is also easy to detect, even as a factor.

! The tables are available at ftp://ftp.dpmms.cam.ac.uk/pub/Carmichael



5 Detecting numbers divisible by a Carmichael number

Let us suppose that N is an RSA modulus divisible by a pseudoprime P. It is likely
that P is a Carmichael number with three prime factors, say P = pqr; and again
likely that the parameters (a, b, c) are all small.

Let us concentrate on the case b = 2a: for example, a = 1, b = 2. We saw that
this occurred in over 10% of such numbers up to 10'®. We have p = 2g+1, ¢ = 4g+1
for some g, so that ¢ + 1 = 2p. So 2N is a multiple of ¢ + 1, and hence g can be
extracted immediately by the p + 1 factoring method of Williams [26]. Knowledge
of ¢ immediately yields g and hence p. We finally need to extract r. If N is 512
bits long then N/pg will be at most 100 digits and so can be factored by general
purpose methods. Since r is congruent to 1 modulo a factor of g which is probably g
itself, one could also use the Brent—Pollard modification [5] of Pollard’s rho method
[20],[21] for finding factors in given congruence classes.

6 Rare events and standards

Rivest [22] described numerical experiments using probabilistic primality tests for
finding primes for potential use in an RSA cryptosystem and concluded that in
practice the probability of obtaining a composite number was within acceptable
limits. The estimates of Damgard, Landrock and Pomerance [7],[8] show that for the
size of primes likely to be used in practice the probability of inadvertently finding
a composite number is negligible (less than 271%° say). Some authors, such as
Landrock [14] and Silverman [25] have concluded that there is no point in including
requirements for primality proofs in standards such as ANSI X9.31.

We suggest that such requirements are not pointless. If an RSA cryptosystem
is being used to sign digital documents, it may be to the advantage of a user to
deliberately weaken his published modulus in order to subsequently repudiate a
document, which he has in fact signed, by asserting that the weakness arose by
chance and that an intruder has discovered the weakness. (Such a situation might
arise, for example, in the context of electronic share trading.) Imposing checks
against such weaknesses in the standard immediately eliminates this possibility,
and avoids the necessity for contesting the plausibility of such claims in court.

7 Conclusion

Reliance on a probabilistic primality test for construction of an RSA modulus is
likely to lead to a choice of factors which if not prime leave the system fatally weak.
Proving the primality of the factors is reasonably fast, guards against an admittedly
unlikely event and can prevent some forms of cheating.
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